HJAR Jul/Aug 2024
HEALTHCARE JOURNAL OF ARKANSAS I JUL / AUG 2024 21 JAMA NETWORK OPEN ORIGINAL INVESTIGATION / PEDIATRICS neural signaling in the frontal and medial regions of the brain, but increased activity and coherence were observed in the occipi- totemporal regions. Many of the affected brain regions, especially reduced corti- cal thickness, increased sulcal depth, and reduced neural activity and coherence, were observed in brain areas that are important for mental health well-being. These data support the use of these imaging param- eters in a future longitudinal study to gauge the subtle yet cumulative changes in brain structure and neurophysiological effects due to repetitive head impacts. n REFERENCES 1. National Federation of State High School Associa- tions. NFHS Releases first high school sports partici- pation survey in three years. 2022. Accessed March 24, 2023. https://www.nfhs.org/articles/nfhs-releas- es-first-high- school-sports-participation-survey-in- three-years/ 2. Baugh CM, Stamm JM, Riley DO, et al. Chronic traumatic encephalopathy: neurodegeneration fol- lowing repetitive concussive and subconcussive brain trauma. Brain Imaging Behav. 2012;6(2):244-254. doi:10.1007/ s11682-012-9164-5 3. McKee AC, Mez J, Abdolmohammadi B, et al. Neu- ropathologic and clinical findings in young contact sport athletes exposed to repetitive head impacts. JAMA Neurol. 2023;80(10):1037-1050. doi:10.1001/ja- maneurol. 2023.2907 4. Goswami R, Dufort P, Tartaglia MC, et al. Fron- totemporal correlates of impulsivity and machine learning in retired professional athletes with a his- tory of multiple concussions. Brain Struct Funct. 2016;221(4):1911-1925. doi: 10.1007/s00429-015-1012-0 5. Tremblay S, De Beaumont L, Henry LC, et al. Sports concussions and aging: a neuroimaging investiga- tion. Cereb Cortex. 2013;23(5):1159-1166. doi:10.1093/ cercor/bhs102 6. Koerte IK, Mayinger M, Muehlmann M, et al. Cor- tical thinning in former professional soccer players. Brain Imaging Behav. 2016;10(3):792-798. doi:10.1007/ s11682-015-9442-0 7. Ware AL, Lebel C, Onicas A, et al; Pediatric Emer- gency Research Canada A-CAP Study Group. Longi- tudinal gray matter trajectories in pediatric mild trau- matic brain injury. Neurology. 2023;101(7):e728-e739. doi:10.1212/WNL. 0000000000207508 8. Dudley JA, Slutsky-Ganesh AB, Diekfuss JA, et al. Helmet technology, head impact exposure, and cortical thinning following a season of high school football. Ann Biomed Eng. 2022;50(11):1608-1619. doi:10.1007/s10439- 022-03023-x 9. Mills BD, Goubran M, Parivash SN, et al. Longitu- dinal alteration of cortical thickness and volume in high-impact sports. Neuroimage. 2020;217:116864. doi:10.1016/j.neuroimage.2020.116864 10. Johnson B, Neuberger T, Gay M, Hallett M, Slobou- nov S. Effects of subconcussive head trauma on the default mode network of the brain. J Neurotrauma. 2014;31(23):1907-1913. doi:10.1089/neu.2014.3415 11. Murdaugh DL, King TZ, Sun B, et al. Longitudinal changes in resting state connectivity and white mat- ter integrity in adolescents with sports-related con- cussion. J Int Neuropsychol Soc. 2018;24(8):781-792. doi:10.1017/ S1355617718000413 12. Abbas K, Shenk TE, Poole VN, et al. Alteration of default mode network in high school football ath- letes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic reso- nance imaging study. Brain Connect. 2015;5(2):91-101. doi:10.1089/brain.2014.0279 13. Slobounov SM, Walter A, Breiter HC, et al. The ef- fect of repetitive subconcussive collisions on brain integrity in collegiate football players over a single football season: a multi-modal neuroimaging study. Neuroimage Clin. 2017;14:708-718. doi:10.1016/j. nicl.2017.03.006 14. Ambrosino S, de Zeeuw P, Wierenga LM, van Dijk S, Durston S. What can cortical development in at- tention- deficit/hyperactivity disorder teach us about the early developmental mechanisms involved? Cereb Cortex. 2017; 27(9):4624-4634. doi:10.1093/ cercor/bhx182 15. Kohli JS, Kinnear MK, Martindale IA, Carper RA, Müller RA. Regionally decreased gyrification in mid- dle-aged adults with autism spectrum disorders. Neurology. 2019;93(20):e1900-e1905. doi:10.1212/ WNL. 0000000000008478 16. Dahnke R, Yotter RA, Gaser C. Cortical thickness and central surface estimation. Neuroimage. 2013;65: 336-348. doi:10.1016/j.neuroimage.2012.09.050 17. Yan CG, Wang XD, Lu B. DPABISurf: data process- ing and analysis for brain imaging on surface. Sci Bull (Beijing). 2021;66(24):2453-2455. doi:10.1016/j. scib.2021.09.016 18. Lv H, Wang Z, Tong E, et al. Resting-state func- tional MRI: everything that nonexperts have al- ways wanted to know. AJNR Am J Neuroradiol. 2018;39(8):1390-1399. doi:10.3174/ajnr.A5527 19. Talavage TM, Nauman EA, Breedlove EL, et al. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma. 2014;31(4):327-338. doi:10.1089/neu. 2010.1512 20. Li Y, Wang N, Wang H, Lv Y, Zou Q, Wang J. Surface-based single-subject morphological brain networks: effects of morphological index, brain par- cellation and similarity measure, sample size-vary- ing stability and test-retest reliability. Neuroimage. 2021;235:118018. doi:10.1016/j.neuroimage.2021.118018 21. Yotter RA, Dahnke R, Thompson PM, Gaser C. Topological correction of brain surface mesh- es using spherical harmonics. Hum Brain Mapp. 2011;32(7):1109-1124. doi:10.1002/hbm.21095 22. Luders E, Thompson PM, Narr KL, Toga AW, Jancke L, Gaser C. A curvature-based approach to estimate local gyrification on the cortical surface. Neuroimage. 2006;29(4):1224-1230. doi:10.1016/j.neu- roimage.2005.08.049 23. Liu CH, Kung YY, Yeh TC, et al. Differing spon- taneous brain activity in healthy adults with two different body constitutions: a resting-state func- tional magnetic resonance imaging study. J Clin Med. 2019;8(7):951. doi:10. 3390/jcm8070951 24. Fremont R, Dworkin J, Manoochehri M, Krueger F, Huey E, Grafman J. Damage to the dorsolateral pre- frontal cortex is associated with repetitive compul- sive behaviors in patients with penetrating brain inju- ry. BMJ Neurol Open. 2022;4(1):e000229. doi:10.1136/ bmjno-2021-000229 25. Schneider DK, Galloway R, Bazarian JJ, et al. Dif- fusion tensor imaging in athletes sustaining repeti- tive head impacts: a systematic review of prospec- tive studies. J Neurotrauma. 2019;36(20):2831-2849. doi:10.1089/neu. 2019.6398 26. Koerte IK, Wiegand TLT, Bonke EM, Kochsiek J, Shenton ME. Diffusion imaging of sport-related re- petitive head impacts: a systematic review. Neuro- psychol Rev. 2023;33(1):122-143. doi:10.1007/s11065- 022-09566-z 27. Wojtowicz M, Gardner AJ, Stanwell P, Zafonte R, Dickerson BC, Iverson GL. Cortical thickness and subcortical brain volumes in professional rugby league players. Neuroimage Clin. 2018;18:377-381. doi:10.1016/j.nicl.2018. 01.005 28. Oliveira TG, Ifrah C, Fleysher R, Stockman M, Lip- ton ML. Soccer heading and concussion are not as- sociated with reduced brain volume or cortical thick- ness. PLoS One. 2020;15(8):e0235609. doi:10.1371/ journal.pone. 0235609 29. Li Q, Zhao Y, Chen Z, et al. Meta-analysis of cor- tical thickness abnormalities in medication-free patients with major depressive disorder. Neuropsy- chopharmacology. 2020;45(4):703-712. doi:10.1038/ s41386-019-0563-9 30. Mahar I, Alosco ML, McKee AC. Psychiatric phe- notypes in chronic traumatic encephalopathy. Neu- rosci Biobehav Rev. 2017;83:622-630. doi:10.1016/j. neubiorev.2017.08.023 31. Kochunov P, Mangin JF, Coyle T, et al. Age-related morphology trends of cortical sulci. Hum Brain Mapp. 2005; 26(3):210-220. doi:10.1002/hbm.20198 32. Im K, Lee JM, Seo SW, Hyung Kim S, Kim SI, Na DL. Sulcal morphology changes and their relationship with cortical thickness and gyral white matter volume in mild cognitive impairment and Alzheimer’s dis- ease. Neuroimage. 2008;43(1):103-113. doi:10.1016/j. neuroimage.2008.07.016 33. Shin SJ, Kim A, Han KM, Tae WS, Ham BJ. Re- duced sulcal depth in central sulcus of major depres- sive disorder. Exp Neurobiol. 2022;31(5):353-360. doi:10.5607/ en22031 34. Zhang Y, Fang T, Wang Y, et al. Occipital corti- cal gyrification reductions associate with decreased functional connectivity in amyotrophic lateral scle- rosis. Brain Imaging Behav. 2017;11(1):1-7. doi:10.1007/ s11682-015-9499-9 35. Liu T, Lipnicki DM, Zhu W, et al. Cortical gyrifica- tion and sulcal spans in early stage Alzheimer’s dis- ease. PLoS One. 2012;7(2):e31083. doi:10.1371/journal. pone.0031083 36. Fagan BT, Satapathy SS, Rutledge JN, Korng- uth SE. Simulation of the strain amplification in sulci due to blunt impact to the head. Front Neurol. 2020;11:998. doi:10.3389/fneur.2020.00998 37. Youn H, Choi M, Lee S, et al. Decreased cortical thickness and local gyrification in individuals with subjective cognitive impairment. Clin Psychophar- macol Neurosci. 2021;19(4):640-652. doi:10.9758/ cpn.2021.19.4.640 38. Wilde EA, Merkley TL, Lindsey HM, et al. Devel- opmental alterations in cortical organization and socialization in adolescents who sustained a trau- matic brain injury in early childhood. J Neurotrauma. 2021;38(1):133-143. doi: 10.1089/neu.2019.6698 39. Xiong KL, Zhang JN, Zhang YL, Zhang Y, Chen H, Qiu MG. Brain functional connectivity and cogni- tion in mild traumatic brain injury. Neuroradiology. 2016;58(7):733-739. doi:10.1007/s00234-016-1675-0 40. Buckner RL, Sepulcre J, Talukdar T, et al. Corti- cal hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Al- zheimer’s disease. J Neurosci. 2009;29(6):1860-1873. doi:10.1523/ JNEUROSCI.5062-08.2009 41. Deng S, Franklin CG, O’Boyle M, et al. Hemody- namic and metabolic correspondence of resting- state voxel- based physiological metrics in healthy adults. Neuroimage. 2022;250:118923. doi:10.1016/j. neuroimage.2022. 118923 42. Meier TB, Giraldo-Chica M, España LY, et al. Resting-state fMRI metrics in acute sport-related concussion and their association with clinical recov- ery: a study from the NCAA-DOD CARE consortium. J Neurotrauma. 2020;37 (1):152-162. doi:10.1089/ neu.2019.6471 43. Vedaei F, Newberg AB, Alizadeh M, et al. Resting- state functional MRI metrics in patients with chronic mild traumatic brain injury and their association with clinical cognitive performance. Front Hum Neurosci. 2021;15: 768485. doi:10.3389/fnhum.2021.768485 44. Witt ST, Lovejoy DW, Pearlson GD, Stevens MC. Decreased prefrontal cortex activity in mild traumatic brain injury during performance of an auditory odd- ball task. Brain Imaging Behav. 2010;4(3-4):232-247. doi:10.1007/ s11682-010-9102-3 ADDITIONAL INFORMATION Open Access This is an open access article distrib- uted under the terms of the CC-BY License. © 2024 Zuidema TR et al. JAMA Network Open .
Made with FlippingBook
RkJQdWJsaXNoZXIy MTcyMDMz